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Abstract: Benzene, an aromatic hydrocarbon that is a natural component of crude oil and natural gas, is toxic to the blood 
and blood-forming organs. Epidemiological studies have established an association between benzene exposure and acute 
myeloid leukemia, and increasing evidence also indicates a possible association between benzene and multiple myeloma. 
A specific benzene-associated myelodysplastic syndrome has also been suggested. Chronic hematotoxic effects of ben-
zene exposure, including reduced lymphocyte, neutrophil and platelet counts in peripheral blood, have been detected at 
occupational exposure below a level that had previously been considered not to cause any health effects. Whether these 
abnormalities represent bone marrow damage and/or initial events in the development of a true neoplastic disease is not 
known. Together with a reported nonlinear relationship between benzene exposure and the level of various metabolites, 
favoring production of biologically reactive quinones at exposure below 1 part per million, these observations suggest that 
benzene even at low exposure levels may contribute to the risk of acute myeloid leukemia or myelodysplastic syndrome, 
especially among genetically susceptible individuals. 

1. INTRODUCTION 

This review focuses on aspects relevant when individuals 
with cancer ask their physician about factors in the working 
environment that might be related to their blood disease and 
for hematologists seeking updated knowledge on benzene-
induced malignancies of the blood and blood-forming or-
gans. Leukemogenesis is a multistep process that is believed 
to include a combination of mutated signal transduction and 
perturbed transcription factors [1,2]. The multifactorial ori-
gin of most types of cancer, including malignancies of the 
blood and blood-forming organs, creates difficulty in deter-
mining the contribution of single agents. The World Health 
Organization (WHO) has estimated that benzene, ionizing 
radiation and ethylene oxide were responsible for 7000 
deaths from leukemia in 2000 [3,4]. The estimated fraction 
attributable to these risk factors was 2% in the WHO study 
compared with a range of 0.8–2.8% for the United States [5] 
and 18% for men in Finland [6]. Although the risk associated 
with occupational exposure is generally several orders of 
magnitude less than for active smoking, dietary factors and 
alcohol consumption in the general population, it is high in 
certain groups of workers. 

Benzene, an aromatic hydrocarbon that is a natural com-
ponent of crude oil and petroleum products, is toxic to the 
blood and blood-forming organs. The cells of the hema-
topoietic system are the most sensitive target organs. Re-
peated occupational benzene exposure over long periods of 
time may affect several hematopoietic parameters [7-11] and 
eventually induce malignancies of the blood and blood-
forming organs. Benzene exposure has been causally associ-
ated with increased risk of acute myeloid leukemia (AML)  
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[12,13], and the associations with multiple myeloma [14,15] 
and non-Hodgkin’s lymphoma [16,17] have been thoroughly 
debated. No clear evidence indicates any threshold level be-
low which benzene does not cause hematotoxic effects in 
humans [18], and recent studies indicate that exposure to 
benzene at levels previously considered not to cause any 
health effects induce hematotoxicity and an increased risk of 
malignancies of the blood and blood-forming organs 
[11,19,20]. 

2. BENZENE EXPOSURE 

2.1. Occupational Exposure Limits for Benzene 

Occupational exposure limits (OEL) are set to protect 
workers from excessive exposure to toxic chemicals in the 
workplace. An OEL defines the maximum average concen-
tration of a chemical in the breathing zone acceptable for a 
normal 8-hour working day for 5 days a week. The OEL is 
often accompanied by a short-term exposure limit, which is 
the maximum average concentration to which workers 
should be exposed for a short period of time (usually 15 
minutes). As the hematotoxic and leukemogenic effects have 
been identified at ever-lower levels, the OEL for benzene has 
been extensively revised and reduced from 100 parts per 
million (ppm) in 1946 to values ranging from 0.1 to 1 ppm in 
2008 [21]. The American Conference of Governmental In-
dustrial Hygienists set a Treshold Limit Value  of 0.5 ppm in 
1997, and the European Union has established a legal bind-
ing limit value of 1 ppm [22]. 

2.2. Sources of Benzene Exposure 

2.2.1. Occupational Exposure to Benzene 

For most job categories the reported full-shift benzene 
exposure in workers’ breathing zone are normally low com-
pared with present OEL. This applies to producing crude oil 
and natural gas [23-27], refining petroleum products [23,28-
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30], distributing petrol and other petroleum products [23,30-
32] and working in car repair shops and petrol stations 
[33,34]. 

However, although the mean exposure for long-term 
sampling during ordinary activity in producing crude oil and 
natural gas are well below 1 ppm benzene most of the time, 
exposure levels up to 18 ppm (57.6 mg/m3) have been re-
ported [27]. Similarly, exposure ranges from below 0.01 to 
4.6 ppm in the production of benzene and when refining 
other petroleum products [28,29,35] and between <0.002 and 
32.5 ppm for the distribution of various petroleum products 
[31,32]. Some specific tasks typically lasting for less than 1 
hour, such as tank cleaning and loading of petrol, may cause 
high short-term exposure [24,27,29,30,36-40]. 

Workers employed in car repair shops, car recycling, pet-
rol stations and transport are potentially exposed to benzene 
through their contact with petrol. Reported full-shift expo-
sure ranges between <0.01 and 28.02 ppm [33,34,41,42]. 
However, the exposure to these groups of workers is proba-
bly declining since the benzene content in petrol has been 
reduced through the implementation of new regulations and 
recommendations, at least in Europe, United States and Can-
ada [43]. van Wijngaarden & Stewart [44] reviewed the ex-
posure levels in other industries such as chemical manufac-
ture, rubber tire manufacture, steel work, laboratories, waste 
collection and disposal and firefighting. 

2.2.2. Non-Occupationally Related Sources of Benzene 

The major sources of benzene exposure for the general 
population are tobacco smoking and benzene emitted into 
ambient air during refueling of petrol and the combustion of 
petrol and other organic materials [45-47]. 

Smoking. Cigarette smoke is a known source of benzene 
and its metabolite hydroquinone [48]. Kim et al. predicted 
that smoking 20 cigarettes per day would be equivalent to an 
occupational exposure of 26 g/m3 (approximately 0.008 
ppm) [49], resulting in 52% more hydroquinone and 20% 
more catechol in smoking individuals than observed in non-
smoking control subjects [50]. The estimated benzene expo-
sure was in accordance with previous predictions for an ur-
ban smoker consuming 20 cigarettes per day [46]. In con-
trast, in an experimental study smokers not occupationally 
exposed to benzene reached a morning concentration of ben-
zene in blood of up to 13 nmol/l after smoking four or five 
cigarettes [51], which is estimated to be equivalent to ben-
zene exposure in the breathing zone of as much as 0.3 ppm 
averaged over an 8-hour shift [52]. 

Ambient air. For the general population, the European 
Union has established a limit value of benzene in ambient air 
of 5 g/m3 (approximately 0.0016 ppm) averaged over a cal-
endar year [53]. In the United Kingdom, annual mean con-
centrations at urban sites range from 2.2 to 8.0 g/m3, and 
data from rural sites showed a mean annual concentration of 
1.3 g/m3 [46]. The maximum hourly concentrations meas-
ured in urban and rural sites were 139 and 15.4 g/m3, re-
spectively. Similar results have been reported elsewhere 
[45,47,54]. Hence, the exposure level posed on the general 
population through refueling and combustion of petrol, pas-
sive tobacco smoking, and point sources such as petrochemi-
cal plants or oil refineries is considerable lower than the 
level experienced by the benzene-exposed worker.  

3. TOXICOKINETICS OF BENZENE 

3.1. Absorption 

Inhalation is the most important route of absorption dur-
ing occupational exposure to benzene. Humans absorb 30–
52% of inhaled benzene, depending on the benzene concen-
tration, length of exposure and pulmonary ventilation 
[51,55,56]. Benzene penetrates skin [57-59]. However, der-
mal absorption of benzene is not extensive, as it evaporates 
quickly due to high vapor pressure. Hence, under normal 
working conditions, dermal absorption of benzene is proba-
bly of minor importance [59-62]. 

3.2. Metabolism 

The liver is the major site of metabolism of benzene [63]. 
Benzene is detoxified in two phases. During phase I, benzene 
is oxidized by cytochrome P450 2E1, forming benzene ox-
ide, an electrophilic reactive intermediate. Subsequently, 
benzene oxide is metabolized by three pathways [63]: 

1) rearrangement non-enzymatically to form phenol;  

2) hydration by epoxide hydrolase to 1,2-benzene dihy-
drodiol, which in turn can be oxidized by dihydrodiol 
dehydrogenase to form catechol; and 

3) glutathione conjugation with glutathione S-transferase 
to form a premercapturic acid, which is converted to 
phenylmercapturic acid. 

Phenol can undergo subsequent hydroxylation to hydro-
quinone, with the consecutive production of p-benzoquinone 
and 1,2,4-trihydroxybenzene. Alternatively, phenol can be 
hydroxylated to catechol, which is converted to o-
benzoquinone. The benzene ring can also be opened either at 
the benzene oxide or oxepin stage, forming muconaldehyde. 
All these metabolites can then undergo a phase II metabo-
lism, leading to excretion of glucuronide and sulfate conju-
gates, mercapturic acid ring-opened metabolites and DNA 
adducts in urine [63]. 

3.2.1. Production of Toxic Metabolites in the Target Organ 

Benzene itself is not regarded as a toxic substance. Ben-
zene toxicity is believed to involve biological interactions of 
multiple reactive benzene intermediates with multiple cellu-
lar targets within the bone marrow. Especially hydroquinone, 
p-benzoquinone, catechol and muconaldehyde, alone or in 
combination, are reported to be the most potent metabolites 
in producing hematotoxicity [63,64]. 

Beside the enzyme CYP 2E1 [65], the bone marrow con-
tains several peroxidases; the most prevalent is myeloperoxi-
dase [66-68]. Phenol, catechol and hydroquinone are trans-
ported to the bone marrow, where myeloperoxidase is re-
sponsible for converting these metabolites to several biologi-
cally reactive quinones [68].  

3.2.2. Nonlinear Benzene Metabolism 

The production of the major benzene metabolites [49,50], 
as well as albumin adducts of benzene oxide and benzoqui-
nones [69,70], exhibit a nonlinear dose-response relationship 
attributable to saturated metabolism of benzene. For the S-
phenylmercapturic acid there was an increasing production 
along with increasing benzene exposure. However, for all 
major metabolites competing for the cytochrome P450 2E1 
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system, such as phenol, catechol, hydroquinone and muconic 
acid, there was in fact a decreasing trend after a transition 
level around 0.03 ppm [49,50]. Above this level the produc-
tion of catechol and phenol dropped by 4.4 and 16-fold al-
ready when reaching exposure of 0.27 ppm, while the reduc-
tion for hydroquinone and muconic acid was only marginal. 
Hence, at low doses (below 1 ppm) the metabolism favored 
the production of hydroquinone and muconic acid. Hydro-
quinone is the precursor of the toxic 1,4-benzoquinone, 
whereas muconic acid is derived from the extremely reactive 
and toxic muconaldehydes. From these results, it was con-
cluded that workers exposed to benzene below 0.1 ppm me-
tabolize benzene about nine times more efficiently and there-
fore more adversely than do heavily exposed workers. 

4. BENZENE TOXICITY IN HUMANS 

4.1. Hematotoxicity Caused by Chronic Benzene Expo-

sure – Bone Marrow Damage or Leukemogenesis? 

Several previous studies [7,8,10,11,71,72] have described 
abnormalities in myeloid and lymphoid cells among workers 
with long-term exposure to benzene. These abnormalities 
have been observed even after low benzene exposure (<1 
ppm) and include decreased circulating white blood cells, 
CD4+ T cells, CD4+/CD8+ ratio and B cells, neutrophils and 
platelets [11]. Tests for linear trends using the benzene con-
centration in air as a continuous variable were significant for 
platelets and various leukocyte subsets except monocytes 
and CD8+ T cells. Diminished thymus function did not ap-
pear to mediate the lymphotoxicity of benzene [73]. Benzene 
affected progenitor cell colony formation significantly more 
strongly than the number of mature blood cells. The geno-
type of benzene detoxifying and activating enzymes influ-
enced leukocyte toxicity – in particular myeloperoxidase and 
NAD(P)H:quinone oxireductase, showing a strong gene-
dosage effect. Taken together, these results suggest that 
long-term exposure to benzene, even below 1 ppm, can in-
duce hematotoxicity. However, whether these reduced levels 
in circulating blood cells simply represent bone marrow 
damage or the initial steps of a neoplastic bone marrow dis-
ease cannot be determined. 

Table 1 presents studies assessing outcomes on the blood 
and blood-forming organs in benzene-exposed workers. 
Since the studies have reported effects on the blood and 
blood-forming organs according to different metrics of expo-
sure, only the directions of the altered level in the respective 
studies are given as arrows. However, two of the studies as-
sessed the reduction in several exposure groups. Lan et al. 
[11] reported that the reductions in the various exposure 
groups compared with the controls were 14.5–26.4% for 
white blood cells, 8.0–15.5% for total lymphocytes, 18.2–
32.1% for granulocytes and 7.0–25.2% for platelets. The 
corresponding ranges reported from Qu et al. [10] were 
13.0–15.6% for red blood cells, 4.3–29.1% for white blood 
cells and 15.7–38.1% for neutrophils. For both these studies 
a significant dose-response relation were found. Importantly, 
several studies [74-76] also reported no decrease in blood 
cell counts among benzene-exposed workers or that some of 
the hematological parameters previously reported to be sen-
sitive to benzene exposure, such as total number of white 
blood cells, neutrophils, eosinophils and monocytes, were in 
fact significantly increased in the exposed group compared 

with controls [77]. The differences in the findings of these 
studies could be related to the reported lower mean exposure 
and the use of routinely collected health surveillance data in 
the negative studies. Further, more of the positive studies 
have been done on Asians, shown to have a higher risk of 
benzene toxicity than other ethnic groups due to genetic 
polymorphism in some enzymes involved in metabolizing 
benzene [78,79]. Nevertheless, overall these studies show 
that benzene induces a hematotoxic effect in both myeloid 
and lymphoid cell lines. 

Studies have also reported that benzene exposure affects 
the proteins of the immune system. These effects include 
reduced serum immunoglobulins [72,80-82], an anti-benzene 
antibody response [83] and reduced complement levels [84]. 

4.1.1. Benzene-Associated Hematotoxicity and Growth 
Factor Signaling 

Benzene-exposed workers had reduced expression of 
various cytokines, including the CXC-chemokines CXCL4 
(platelet factor 4)

 
and connective tissue–activating peptide 

(CTAP-III), compared with unexposed workers [85]. These 
chemokines are mainly released by platelets, but the levels 
showed no correlation with peripheral blood platelet counts. 
Thus it was concluded that, the altered levels of these media-
tors probably reflect a qualitative difference between throm-
bocytes derived from benzene-exposed and -unexposed indi-
viduals. Twenty-nine genes, including the two chemokines 
CXCL4 (downregulated) and chemokine (C-X-C motif) 
ligand 16 (upregulated), were likely to be differentially ex-
pressed in workers heavily exposed to benzene (mean expo-
sure = 44 ppm) compared with unexposed workers [86]. 
Thus, alteration in the cytokine network, and especially the 
chemokine system, seems to be important in benzene toxic-
ity. 

4.2. Benzene-Associated Aplastic Anemia 

Chronic exposure to high benzene concentrations has 
long been associated with aplastic anemia [87]. Most of 
these cases have been diagnosed based on pancytopenia in 
peripheral blood, and direct examination of the bone marrow 
is missing for most cases [for references see 88]. Given the 
recent observation of hypoplastic myelodysplastic syndrome 
in benzene-exposed individuals (see below) [88], the re-
ported association between benzene exposure and aplastic 
anemia might at least partly represent an association between 
benzene exposure and myelodysplasia. 

4.3. Benzene-Associated Myelodysplastic Syndrome 

Several studies [88-90] have described an association be-
tween benzene exposure and myelodysplastic syndrome, 
with Irons et al. [88] reporting a unique form of benzene-
associated myelodysplasia. Irons et al. included a relatively 
low number of patients, but they underwent detailed exami-
nation. Patients were referred to hospitals based on initial 
clinical presentation and/or a medical history of occupation-
ally related benzene intoxication. Their benzene exposure 
was independently verified, and estimated full-shift exposure 
averaged between 50 and 300 ppm, which is very high com-
pared with the OEL of 1 ppm benzene or less in most west-
ern countries [21]. The patients had been exposed for vary-
ing periods of time ranging from 6 to 22 years and were re-
moved from exposure on average 2.7 years before evalua-
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tion. Thus, these observations are probably not representative 
for western industry, where the time-weighted average expo-
sure is generally much lower and the high exposure during 
specific tasks usually lasts for brief periods of the work shift 
[21,24,26]. 

Table 2 summarizes the characteristics of benzene-
associated myelodysplastic syndrome from workers in China 
with long-term exposure [88]. A striking feature is the bone 
marrow hypocellularity observed in 17 of the 23 patients. 
For many cases, there was a lack of concordance between the 
severity of the marrow abnormalities and peripheral blood 
cytopenia. Another striking characteristic was the high fre-
quency of normal cytogenetics, differing from chemother-
apy-induced myelodysplastic syndrome that is characterized 
by certain chromosomal deletions (alkylating agents) or 

translocations (topoisomerase inhibitors) [91]. Finally, the 
presence of immune system abnormalities is not surprising. 
Myelodysplastic syndrome is associated with immune sys-
tem abnormalities, reflected in the polyclonal hypergamma-
globulins detected in about one third of patients [92]. A mi-
nority of myelodysplastic syndrome patients also develop 
autoimmune disease [92,93]. 

4.4. Genetic and Epigenetic Effects in Benzene-Exposed 
Individuals 

4.4.1. Chromosomal Abnormalities in Benzene-Exposed 

Individuals 

Monosomy of chromosome 7, trisomy 8 and transloca-
tions between chromosomes 8 and 21 (t(8;21)) are chromo-
somal changes observed in AML [94,95]. An increased inci-

Table 1. Selected Studies on Outcomes on the Blood and Blood-Forming Organs Among Benzene-Exposed Workers 

Outcome on the Blood and Blood-Forming Organs 

White Blood Cells 
Study Population and 

Design 

Benzene (ppm) 

Measure of Central 

Tendency (Range) 
Red Blood 

Cells Total Lymphocytes Neutrophils Granulocytes 

Platelets 

Reference 

Benzene-exposed workers 

– USA 

Routinely collected 

surveillance data 

Range of geometric 

means: 

0.01–1.40 ppm 

   NA NA  [74] 

Benzene-exposed workers 

– USA 

Routinely collected 

surveillance data 

Mean: 

0.55 ppm (0.01–87.7) 
   NA NA  [75] 

Benzene-exposed workers 

– China 

Cross-sectional study 

Median: 

31 ppm (1–328) 
   NA NA  [7] 

Production of natural 

rubber film – USA 

Matched case-control 

design 

Maximum daily dose 

estimate: 34 ppm 

 

 

 

 
NA NA NA NA [8] 

Petroleum workers 

 – USA 

Routinely collected 

surveillance data 

Mean: 

0.81 ppm (0.14–2.08) 
  NA NA NA  [71] 

Shoemaking-industry 

 – Croatia 

Cross-sectional study 

Median: 

5.9 ppm (1.9–14.8) 
NA NA  NA NA NA [72] 

Benzene-exposed workers 

– China 

Cross-sectional study 

Median: 3.2 ppm 

(0.06–122) 
  ( )  ( )  [10] 

Shoe-making industry 

 – China 

Cross-sectional study 

Means (ppm): 

<1, 1 to <10 and 10 ppm 
NA   NA   [11] 

Petrochemical workers 

 – USA 

Routinely collected 

surveillance data 

Means: 

1977–1987: 0.6 ppm 

1988–2002: 0.14 ppm 

   NA NA  [76] 

: no difference between exposed workers and reference group. : significantly reduced level in exposed workers compared with reference group. : signifi-
cantly increased level in exposed workers compared with reference group. NA: the parameter was not assessed or reported. 
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dence of these aberrations has been reported in workers ex-
posed to benzene [96]. Studies of chromosomal abnormali-
ties in blood cells have suggested that benzene metabolites 
particularly produce monosomy of chromosomes 5 and 7 in 
human lymphocytes from healthy workers exposed to ben-
zene [97] and in human bone marrow cells obtained from 
healthy volunteers [98,99], with bone marrow cells being 
more susceptible than lymphocytes. The aberrations t(8;21) 
and trisomy 8 have also been reported [100]. In a recent pilot 
study comparing six benzene-exposed workers with five 
unexposed referents, Zhang et al. [101] reported that ben-
zene exposure was associated with monosomy of chromo-
somes 5, 6, 7 and 10 and with trisomy for chromosomes 8, 9, 
17, 21 and 22. 

A dose-dependent induction of long-arm deletion of 
chromosome 6 [del(6q)] and an increased frequency of trans-
location t(14;18) among highly exposed workers have been 
reported [102]. Both t(14;18) and del(6q) are also frequently 
observed in lymphoma patients [103-105]. Induction of 
t(4;11) and t(6;11), common in therapy-related leukemia due 
to topoisomerase II–inhibiting drugs, was not found. Taken 
together, these observations suggest that benzene produces 
selective effects on certain chromosomes. Another study 
described an association between chromosomal abnormali-
ties in lymphocytes and the frequency of activated T cells in 
peripheral blood among workers exposed to benzene, sty-
rene, polycyclic aromatic hydrocarbons and/or solvents and 
unexposed referents [106], which suggests a link between 
genotoxicity and immunomodulation. 

An important question then is why the benzene-
associated monosomies and trisomies are not detected in the 
patients with benzene-associated myelodysplastic syndromes 
reported by Irons et al. [88] (Table 2). The present scientific 
literature cannot answer this question, but possible explana-
tions are: (i) variation in exposure; (ii) certain abnormalities 
may predispose to the direct development of leukemia with-
out preleukemic myelodysplasia; or (iii) cells with these ab-
normalities may not survive long enough to form the basis 
for disease development. 

4.4.2. Oxidative stress, DNA damage and changes in DNA 

methylation patterns 

Several studies have reported oxidative stress [107,108] 
and increased single-strand breaks in the DNA of circulating 
blood cells [108-110] among workers exposed to benzene. A 
study of filling station attendants exposed to benzene [107] 
found a significant association between benzene exposure 
and the urinary oxidative DNA adduct 8-hydroxydeoxy-
guanosine (8-OHdG), a biomarker of oxidative stress [111]. 
Liu et al. [112] reported that both concentrations of benzene 
in air and urinary t,t-muconic acid were significantly associ-
ated with 8-OHdG in lymphocyte DNA, together with a cor-
relation between 8-OHdG and micronucleus frequency. 
Workers exposed to gasoline, with an average benzene expo-
sure of 0.13 ppm over a full shift, had an increase in single-
strand breaks in DNA of leukocytes compared with unex-
posed controls. Urinary 8-OHdG increased over the shift 

Table 2. Clinical and Biological Characteristics of Myelodysplastic Syndrome Developing After Long-Term Exposure to High Ben-

zene Concentrations; A Summary of Reported Observations for 23 Chinese Workers Previously Exposed to Benzene [88] 

Patient characteristics 

Seven men and 16 women, mean age 44.4 years (standard deviation = 7.8) 

Median duration of exposure 14 years, range 6–22 years 

Median time since last exposure 36 months, range 0–95 months 

Estimated full-shift exposure averaging between 50 and 300 ppm benzene 

Bone marrow morphology 

Hypocellularity (17 of 23) with uneven distribution of remaining hematopoietic cells throughout the marrow 

Dyserythropoiesis with macrocytic and megaloblastic changes, myeloid cells with megaloblastic alterations and abnormal cytoplasmic morphology 

Prominence of abnormal eosinophilic precursors (22 of 23) 

Hematophagocytosis (16 of 23) 

 

Genetic abnormalities 

Normal cytogenetics in all patients 

No Flt3 mutations detected 

Immunological abnormalities 

Increased levels of circulating large granular lymphocytes 

Decreased CD4+/CD8+ T-cell ratio in the bone marrow 

Clonal or oligoclonal proliferation of bone marrow T lymphocytes determined by analysis of clonal rearrangements of T-cell receptor chains 

(14 of 23) 
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among exposed workers, and the increase was significantly 
associated with the exposure to benzene during the shift. 

In another study, comet assays were carried out to evalu-
ate DNA damage (single-strand breaks) in T and B lympho-
cytes and granulocytes from benzene-exposed workers [109]. 
Significantly higher DNA damage, measured as tail mo-
ments, was reported among exposed workers than among 
referents. B lymphocytes, which have the shortest life span, 
were more sensitive to low levels of benzene than were the T 
lymphocytes and granulocytes. Similar results have been 
reported for benzene-exposed workers from a range of indus-
tries with a mean benzene exposure of 0.27 ppm (range 
0.005–2.03 ppm) [110]. 

Bollati et al. [113] studied aberrant DNA methylation 
patterns in gas station attendants and traffic police officers 
exposed to low benzene levels. Benzene exposure was asso-
ciated with a significant reduction in global methylation and 
gene-specific hypermethylation (p15 gene) and hypomethy-
lation (MAGE-1 gene). Loss of imprinting was only found in 
exposed subjects, but no dose response was found. Similar 
aberrant DNA methylation patterns have been found in sub-
jects with AML [114]. 

4.5 Possible clues to the Mechanisms Behind the Effect of 
Benzene on Hematopoiesis 

4.5.1. Genotoxic Effects of Benzene 

Benzene’s metabolites are non-mutagenic or weak 
mutagens [115,116]. In contrast to most other carcinogens, 
benzene is not assumed to directly damage the DNA. The 
mechanisms behind the genotoxic effect of benzene’s me-
tabolites are proposed to include concerted action with the 
generation of active oxygen species via redox cycling, ad-
duct formation and damage to DNA-associated proteins such 
as topoisomerase II and the mitotic apparatus, with conse-
quent damage including DNA strand breakage, mitotic re-
combination, chromosome translocations and aneuploidy 
[115,116]. 

Topoisomerases are nuclear enzymes that play important 
roles in maintaining the integrity of the genome during repli-
cation, recombination and the separation of sister chromatids 
[117]. Experimentally, the benzene metabolite hydroquinone 
can be activated to a topoisomerase II inhibitor by myeloper-
oxidase and H2O2 [118]. Benzene-derived quinones also en-
hance DNA cleavage and inhibit DNA ligation mediated by 
topoisomerase II  [119]. However, human studies provide 
little evidence that inhibition of topoisomerase II plays a role 
in benzene’s leukemogenic effects. 

Benzene induces gene-duplicating mutations in exposed 
humans [120]. One of the most frequent mutations in AML 
is a duplicating mutation of the receptor tyrosine kinase Flt3 
[121], but a cause–effect relationship between this mutation 
and benzene exposure has never been reported. 

Alternative mechanisms, involving oncogene activation 
such as c-Myb [122] and aryl hydrocarbon receptor activa-
tion [123,124], have been proposed to be involved in ben-
zene-induced hematotoxicity. Aryl hydrocarbon receptor 
activation by benzene metabolites suggests biological effects 
of benzene at low doses. Together, these studies suggest a 
complex mechanism of benzene-induced malignancies, in-

cluding genotoxic damage, DNA repair failures and altered 
oncogenic signaling. 

4.5.2. Benzene-Induced Dysfunction of Cell Cycle Regula-

tion 

Through the presence of myeloperoxidase [66,68], an en-
zyme involved in forming the active benzene metabolite hy-
droquinone [67], the bone marrow may be particular prone to 
benzene-induced toxicity. Hydroquinone affects the differen-
tiation of myeloblasts in mice and myeloid-derived cell lines 
[125] and may represent a mechanism for acute and chronic 
toxicity. Several experimental animal and in vitro studies 
[126-130] have reported benzene-induced dysregulation of 
cell cycle regulation in hematopoietic progenitor cells, the 
cells reported to be most sensitive to benzene’s toxic effects. 

Normal function of the tumor suppressor protein p53 is 
essential in DNA repair, cell cycle control and cell apoptosis. 
Yoon et al. [126] reported that benzene suppresses the cell 
cycle in hematopoietic progenitor cells (colony-forming 
unit–granulocyte monocyte progenitor) in mice by p53-
mediated overexpression of p21, a cyclin-dependent kinase 
inhibitor. This resulted not simply in suppression of hema-
topoiesis but rather in a dynamic change of hematopoiesis 
during and after benzene exposure (oscillatory changes), 
possibly through the genetic and epigenetic effects of ben-
zene [127]. It has also been reported that bone marrow cells 
in p53-deficient mice expressed significantly reduced levels 
of many key genes involved in the p53-regulated DNA dam-
age response pathways (p21, gadd45, cyclin G, bax and bcl-
2) after chronic exposure to benzene [128]. In human CD34 
cells treated with the benzene metabolite 1,4-benzoquinone, 
induction of the cyclin-dependent kinase inhibitor p21 at the 
mRNA level was found, while no changes in mRNA expres-
sion were observed for p53 or the DNA repair genes rad51, 
xpc, xpa, ku80 and ape1 [131]. 

4.5.3. Effects of Benzene Metabolites on the Production of 

Chemokines and Cytokines 

Gillis et al. [132] investigated the effects of exposure to 
benzene metabolites on the immune system measured by the 
secretion of extracellular cytokines by human peripheral 
blood mononuclear cells exposed to benzene metabolites. 
Hydroquinone enhances cytokine-dependent clonal prolifera-
tion of a subpopulation of human CD34+ BM cells, which 
appears to be mediated via the extracellular signal-regulated 
kinase/activation protein-1 signaling pathway [133-136]. 
Hydroquinone has also been reported to synergize with tu-
mor necrosis factor  to induce apoptosis in human CD34+ 
hematopoietic progenitor cells by inhibiting nuclear factor-
kappa B [137], and to inhibit macrophage-mediated immune 
responses by modulating intracellular signaling and protec-
tive mechanisms [138]. 

5. EPIDEMIOLOGICAL STUDIES OF BENZENE 
TOXICITY 

5.1. Leukemia 

Epidemiological studies of leukemia provide strong evi-
dence for a causal association between exposure to benzene 
and leukemia [12]. Numerous mortality and incidence stud-
ies assessing this association have been performed mainly in 
benzene-exposed workers from the production of natural 
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rubber film [139-142], shoe-producing industry [143,144] 
and the petroleum industry [19,20,145-157], but other indus-
tries and occupations have also been examined [90,158-160]. 
Table 3 provides an overview of studies that includes esti-
mates of the quantitative risk of benzene exposure. 

The association between benzene exposure and leukemia 
is strongest for AML and less clear for the other subtypes 
[12,13]. Several studies on mortality rates or cancer inci-
dence assessing the risk of leukemia in benzene-exposed 
cohorts have reported an increased risk of AML 
[19,20,90,142,146,147]. A recent review on benzene expo-
sure and leukemia subtypes including nine cohorts and 13 
case–control studies from several industries [13] showed a 
high and significant risk of AML, with a positive dose–
response relationship across study designs. A study of a co-
hort of offshore workers in the petroleum industry published 
after this review [20] showed a relative risk of 2.9 among 
workers assumed to have the most extensive contact with 
crude oil. 

There is a biologically plausible basis for suggesting 
benzene as a causal factor for acute lymphoblastic leukemia 
and chronic myeloid leukemia, which also develop in the 
bone marrow, and some studies of benzene-exposed workers 
have reported such an increased risk. The assessment of the 
risk of these malignancies is mainly hampered by their rarity, 
and Schnatter et al. [13] concluded that the data for these 
leukemia subtypes were sparse and inconclusive. An older 
meta-analysis of leukemia subtypes including 19 studies of 
various populations of petroleum workers [148] found no 
excess of acute lymphoblastic leukemia and chronic myeloid 
leukemia. However, the power of these analyses was low, as 
indicated by the failure of the same meta-analyses to show a 
significantly increased risk for AML. 

Some epidemiological studies [152,157] have reported an 
association between benzene exposure and chronic lympho-
cytic leukemia. The main problem in assessing the risk of 
chronic lymphocytic leukemia is the different disease classi-
fications used over time [161] and the lack of specific infor-
mation on chronic lymphocytic leukemia in most studies 
[162]. Schnatter et al. [13] concluded that the risk of devel-
oping chronic lymphocytic leukemia was only increased in 
some case–control studies, but not in the cohort studies, ar-
guing against a major effect. 

5.1.1. Temporal Variation in Risk and Reported Latency 

Between Exposure and the Development of Leukemia 

Several authors have discussed the temporal variation of 
the risk of developing leukemia after exposure to benzene. 
For the Pliofilm cohort [140,141], the increased risk was 
reported to be attributable primarily to exposure occurring 
during the last 10 years preceding death [163,164], and the 
risk was highest in the first years after exposure ended [164]. 
Glass et al. [165] reported a similar pattern before leukemia 
was diagnosed in the Health Watch cohort from the Austra-
lian petroleum industry. Further, in the large cohort of ben-
zene-exposed workers in China, the risk for the combination 
of AML and related myelodysplastic syndromes was highest 
among workers who had only recent exposure (<10 years 
prior to diagnosis) [90].  

Although the time estimates reported in studies on ben-
zene-induced malignancies of the blood and blood-forming 

organs represent a combination of latency and the effect of 
cumulative exposure and period of employment, the observa-
tions are compatible with a wide range of latency periods for 
AML induced by benzene. Latency periods for leukemia, 
representing years between first exposure and death, ranged 
from 2 to 51 years in the Pliofilm cohort [141]. Among off-
shore workers exposed to benzene during the production of 
crude oil, the median time between the first year of regis-
tered engagement and the diagnosis of AML was 6 years 
(range 5–21) [20]. The median latency time for lymphomas 
and leukemias combined was 9.5 years among PhD fellows 
at a university laboratory and 7.5 years for students attending 
a basic organic chemistry course where benzene was used 
[166]. On the other hand, several mortality studies of work-
ers from the petroleum industry have shown an increased 
risk of leukemia along with increasing duration of employ-
ment, with the highest risk among workers employed for 
more than 20–30 years [146,147,150,157]. The information 
given by Costantini et al. [144] enabled the calculation of 
mean and median times from first exposure to death from 
lymphohematopoietic cancer of 28.4 and 31.5 years, respec-
tively (range 3-49 years). 

5.2. Multiple Myeloma 

The association between exposure to benzene and multi-
ple myeloma is contentious [14,15,167,168]. The conclusion 
in an older meta-analysis of 22 cohort mortality studies in 
the petroleum industry was that these workers were not at 
any increased risk of developing multiple myeloma [167]. In 
contrast, a more recent meta-analysis including seven cohort 
studies focusing on benzene-exposed workers found a sig-
nificant excess in the relative risk (RR = 2.13) [168]. 

Most of the studies included in the negative meta-
analysis [167] were performed on a cohort known to be ex-
posed to relatively low concentrations of benzene. In addi-
tion, multiple myeloma probably has a longer latency period 
than AML [20,139,140,159], making the causal relation be-
tween benzene and multiple myeloma more difficult to de-
tect epidemiologically. It has therefore been claimed that 
asking whether benzene causes multiple myeloma is an un-
reasonable question in a cohort in which the benzene effect 
is too weak to even observe an increased risk of AML [15]. 
Further, a marked limitation of the studies in the petroleum 
industry is the likely presence of a healthy worker effect, 
with overall mortality and overall cancer incidence among 
these workers significantly lower than in the general popula-
tion [153,154,156,169]. The healthy worker effect might 
mask increased risks of multiple myeloma even in studies 
capable of showing an increased risk of AML. 

Interestingly, in the cohort described by Sathiakumar et 
al. [147], with an increased risk of AML (RR = 1.6) among 
men ever employed in the oil and gas sector, unpublished 
results also showed a borderline significantly increased risk 
of multiple myeloma (RR = 2.9) [170]. Sailors exposed to 
cargo vapor from gasoline and other light petroleum prod-
ucts on tankers had an increased risk of multiple myeloma 
[171]. The recent finding of an increased risk of multiple 
myeloma (RR = 2.49) among upstream petroleum workers 
also showing an increased risk of AML (RR = 2.89) provides 
further evidence of an association between benzene exposure 
and the risk of multiple myeloma [20].  Several studies have 
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Table 3. Overview of Studies Assessing the Risk of Leukemia and/or Acute Myeloid Leukemia in Cohorts Occupationally Exposed to 

Benzene that Also Include Risk Estimates for Cumulative Benzene Exposure (ppm-years). Risk Estimates Given in Bold are 

Statistically Significant 

Industry Design n Exposure Metric Exposure Leukemia 

Acute Mye-

loid Leuke-

mia 

Acute Nonlym-

phocytic Leuke-

mia or Acute 

Leukemia 

Ref. 

All exposed  SMR 3.4   Cohort study (mor-

tality) – USA 

1165 

Cumulative 

exposure 

0.001–40 ppm-years 

40–200 ppm-years 

200–400 ppm-years 

>400 ppm-years 

SMR 1.1 

SMR 3.2 

SMR 11.9 

SMR 66.4 

  

[140] 

All exposed  SMR 2.5    Cohort study (mor-

tality) – USA 

 

Update of Rinsky 

et al. 1987 

1291 

Cumulative 

exposure 

0.001–39.99 ppm-

years 

40–199.99 ppm-years 

200–399.99 ppm-years 

>400 ppm-years 

SMR 1.5 

SMR 3.2 

SMR 5.6 

SMR 24.0 

  

[141] 

All exposed   SMR 5.0  

Manufacture 

of natural 

rubber 

Cohort study (mor-

tality) – USA 

 

Update of Rinsky 

et al. 1987 

Not 

given 
Cumulative 

exposure 

<40 ppm-years 

40–200 ppm-years 

200–400 ppm-years 

>400 ppm-years 

 SMR 1.2 

SMR  

SMR 27.2 

SMR 98.4 

 

[142] 

All exposed  RR 2.5  RR 4.1 Variety of 

industries and 

occupations 

using ben-

zene 

Cohort study (mor-

tality) – China 

74,828 

Cumulative 

exposure 

<40 ppm-years 

40–99 ppm-years 

100 ppm-years 

RR 1.9 

RR 3.1 

RR 2.7  

 RR 2.7 

RR 6.0 

RR 4.4 

[90] 

Manufacture 

of shoes 

Cohort study (mor-

tality) – Italy 

1687 Cumulative 

exposure 

<40 ppm-years 

40–99 ppm-years 

100–199 ppm-years 

200 ppm-years 

SMR 1.3 

SMR 4.1 

SMR 2.5 

SMR 5.1 

  [144] 

1 ppm-years 

> 1–2 ppm-years 

> 2–4 ppm-years 

> 4–8 ppm-years 

>8–16 ppm-years 

> 16 ppm-years 

OR 1.0  

OR 3.9 

OR 6.1 

OR 2.4 

OR 5.9 

OR 98.2  

  Petroleum 

industry 

 

 

 

 

Nested case-

control study – 

Australia 

33 cases 

of leu-

kemia 

Cumulative 

exposure 

4 ppm-years 

>4–8 ppm-years 

>8 ppm-years 

  1.0  

OR 0.5 

OR 7.2 

[19] 

All exposed  OR 1.0 OR 1.0  Petroleum 

industry 

Nested case-

control study 

– United Kingdom 

91 cases 

of leu-

kemia 
Cumulative 

exposure  

<0.45 ppm-years 

0.45–4.49 ppm-years 

4.5–44.9 ppm-years 

45 ppm-years 

OR 1.0 

OR 1.4 

OR 2.5 

OR 1.4 

OR 1.0 

OR 2.2 

OR 2.8 

OR  

 

[150] 

 



Benzene’s Effects on Hematopoiesis The Open Hematology Journal, 2008, Volume 2    95 

Table 3. contd…. 

Industry Design n Exposure Metric Exposure Leukemia 

Acute Mye-

loid Leuke-

mia 

Acute Nonlym-

phocytic Leuke-

mia or Acute 

Leukemia 

Ref. 

Petroleum 

industry – 

distribution 

Nested case-

control study 

 – Canada 

14 cases 

of leu-

kemia 

Cumulative 

exposure  

<0.45 ppm-years 

>0.45–4.5 ppm-years 

>4.5–45 ppm-years 

>45 ppm-years 

OR 1.0 

OR 0.4 

OR 0.2 

OR 1.5 

  [149] 

All exposed   SMR 1.1  SMR 1.1 Chemical 

plants 

Cohort study (mor-

tality) – USA 

2266 

Cumulative 

exposure 

<28.3 ppm-years 

28.3–79.1 ppm-years 

>79.1 ppm-years 

SMR 0.6 

SMR 2.0 

SMR 2.2 

 SMR 0.9 

SMR 1.5 

SMR 1.6 

[160] 

 

All exposed  SMR 1.3   Chemical 

plant 

Cohort study (mor-

tality) 

USA 

4417 

Cumulative 

exposure 

No exposure 

<1 ppm-years 

1–6 ppm-years 

>6 ppm-years 

SMR 1.0 

SMR 0.7 

SMR 1.4 

SMR 1.7 

 SMR 0.8 

SMR 1.4 

SMR 2.7 

SMR 2.2 

[159] 

0 ppm-years 

0.1–1.0 ppm-years 

1.1–5.4 ppm-years 

5.5–16.7 ppm-years 

16.8 ppm-years 

OR 1.0 

OR 0.7 

OR 1.4 

OR 1.9 

OR 3.6 

 OR 1.0 

OR 0.3 

OR 0.3 

OR 1.2 

OR 4.6 

Gas and 

electricity 

utility 

Nested case-

control study 

 – France 

72 cases 

of leu-

kemia  

Cumulative 

exposure  

Never exposed 

0.1–5.4 ppm-years 

5.5 ppm-years 

 OR 1.0  

OR 0.2 

OR 2.4 

 

[158] 

 

SMR: standardized mortality ratio. RR: rate ratio. OR: odds ratio. 
 
also reported that proximity to oil or gas fields represent an 
increased population risk of developing lymphohema-
topoietic cancers, including multiple myeloma [172,173]. On 
the other hand, the increased risk of multiple myeloma re-
ported in petroleum-related cohorts might also be related to 
exposure to compounds in diesel or engine exhaust other 
than benzene [174-176]. 

5.3. Lymphoma 

Lymphoma is a group of heterogeneous malignancies. 
The causes of lymphoma are still largely unknown, but given 
the potential for benzene to affect the immune system, an 
association between benzene exposure and non-Hodgkin’s 
lymphoma has been suggested. In a large cohort of workers 
in China with 10 or more years of benzene exposure, Hayes 
et al. [90] reported an RR of non-Hodgkin lymphoma of 4.2 
(95% confidence interval (CI) 1.1–15.9) versus 0.7 (95% CI 
0.1–7.2) for workers exposed to benzene for less than 5 
years. The increased risk was found only for workers with an 
average exposure of 25 ppm benzene (RR = 4.7). Several 
other studies have reported an increased risk of non-Hodgkin 
lymphoma among workers occupationally exposed to ben-
zene [157,177-179] or to a mixture of organic solvents rather 
than benzene alone [177,180,181]. 

Except for the unpublished results of a significantly in-
creased risk of non-Hodgkin lymphoma (RR = 2.4) among 
men ever employed in the oil and gas sector [170] and in 
petroleum workers hired prior to 1950 (standardized mortal-
ity ratio 1.57) [157], most cohorts of petroleum workers with 
a potential for benzene exposure have reported negative find-
ings on benzene-induced non-Hodgkin lymphoma. However, 
negative findings in cohorts of petroleum workers might be 
explained by exposure in this industry not being sufficiently 
high to induce non-Hodgkin lymphoma or the follow-up 
time to detect an increased risk of non-Hodgkin lymphoma 
being too short. 

5.4. What Level of Benzene Exposure May Induce Ma-
lignancies of the Blood and Blood-Forming Organs? 

There is no clear evidence of a threshold level below 
which benzene does not affect human hematopoiesis, and an 
increasing number of studies indicate an increased risk of 
leukemia at levels well below 10 ppm [19,20,90]. However, 
a marked limitation of studies on benzene-induced malig-
nancies of the blood and blood-forming organs is the lack of 
good exposure estimates. Table 3 provides an overview of 
studies that estimate the quantitative risk of benzene expo-
sure. Most studies have focused on describing the average 
airborne benzene exposure over a full work shift cumulated 
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over the duration of employment, such as ppm-years, where 
cumulative exposure levels of 40 and 200 ppm-years repre-
sent 40 years of 1 and 5 ppm benzene, respectively. How-
ever, some studies are also estimating the risk for other ex-
posure metrics, such as average exposure, exposure intensity 
and duration of employment. 

Which exposure metric best predicts risk? The exposure 
metric that best predicts the risk of benzene-induced malig-
nancies of the blood and blood-forming organs is not known, 
and future epidemiological studies need to better describe the 
variability of occupational benzene exposure. Although some 
of the studies assessing benzene-induced leukemia in occu-
pational cohorts also include various exposure metrics, such 
as duration of exposure, exposure intensity and average ex-
posure, most studies focus on describing the average air-
borne benzene exposure over a full work shift cumulated 
over the duration of employment, such as ppm-years. How-
ever, the number of peak exposures to benzene (above 100 
ppm), rather than cumulative exposure, has been proposed to 
best predict the risk of malignancies of the blood and blood-
forming organs [159]. Among petroleum workers, exposure 
to concentrated benzene has resulted in a higher risk of leu-
kemia than exposure to the same amount of benzene encoun-
tered in a more dilute form such as in petrol [19]. 

Nonlinear metabolism. Emerging knowledge of a nonlin-
ear dose-related production of major metabolites, favoring 
the production of the hematotoxic quinones at low benzene 
exposure, implies that previous risk assessments probably 
underestimated the risk at low exposure. As several re-
searchers [49,50,69] argue, the workers exposed to benzene 
below 1 ppm will be subjected to the maximum possible 
mass of metabolites per unit of benzene exposure due to 
more effective metabolism at low exposure. Further, due to 
this saturated metabolism, high concentrations of benzene, 
both as a time-weighted average and as transient peak expo-
sures, might have diminished the effect on workers’ risk of 
developing hematotoxic effects or malignancies of the blood 
and blood-forming organs as compared with low benzene 
exposure. 

Smoking-induced risk of leukemia. As cigarette smoke is 
a known source of benzene exposure [48], the reported in-
crease in AML among smokers, with a relative risk ranging 
from 1.4 to 2.0, further supports a leukemogenic effect at 
low benzene exposure [182,183]. Cigarette smoke contains 
several carcinogenic agents in addition to benzene, and ben-
zene’s contribution to the increased risk has not been estab-
lished. However, benzene in cigarettes contributes to an es-
timated 8–48% of smoking-induced leukemia deaths and 12–
58% of smoking-induced deaths from AML [184]. Although 
far from being conclusive, several factors argue for benzene 
being an important contributor to smokers’ leukemia risk, 
such as increased concentration of benzene, hydroquinone 
and catechol among smokers versus nonsmokers and simi-
larities in the chromosome abnormalities found in smoking- 
and benzene-induced AML [183]. 

6. INFLUENCE OF POLYMORPHISM IN GENES ON 
THE SUSCEPTIBILITY TO BENZENE-INDUCED 

HEMATOTOXICITY 

The concentration of benzene and its metabolites in bio-
logical media after a given level of exposure and the sensi-

tivity to the toxic effects of benzene differ between individu-
als. The variability in the toxicokinetics is caused by biologi-
cal factors such as race, sex, age and amount of adipose tis-
sue and environmental influences such as routes of exposure, 
physical activity, competitive metabolic interaction, smok-
ing, alcohol consumption and dietary habits [185]. Individual 
differences in the sensitivity to the toxic effects are explained 
partly by polymorphisms of genes important in benzene me-
tabolism, DNA repair or regulation of hematopoiesis. 

6.1. Enzymes Involved in Metabolizing Benzene 

Genetic variation resulting in increased activity of the ac-
tivation enzymes cytochrome P450 2E1, microsomal epoxide 
hydrolase and myeloperoxidase and/or decreased activity of 
detoxification enzymes glutathione-S-transferase and NAD 
(P)H:quinone oxyreductase have all individually been asso-
ciated with increased susceptibility to benzene’s toxic ef-
fects. Genetic variation has been associated with leukemia 
[186,187], benzene poisoning [188,189], leukocyte toxicity 
[11,190], chromosomal aberrations [191] and affected me-
tabolism [192,193]. 

Myeloperoxidase’s ability to metabolize phenol and hy-
droquinone to toxic quinones is assumed to play a key role in 
benzene’s hematotoxic effect. Mutant genotypes of myelop-
eroxidase have been reported to be associated with a reduced 
risk of acute leukemia development, explained by less mye-
loperoxidase activity and diminished ability to catalyze ben-
zene [187], while the normal expressed genotype has been 
associated with a rise in chromosomal aberrations [191] and 
a greater decline in leukocyte count [11] among benzene-
exposed workers. Myeloperoxidase polymorphism has also 
been associated with reduced risk of other types of cancer 
[194,195].  

6.2. Cytokines 

Studies suggest that soluble mediators are important in 
developing benzene-associated hematotoxicity. Lan et al. 

[196] investigated the frequency of single nucleotide poly-
morphisms (SNPs) for 20 candidate genes involving these 
(hematopoiesis regulatory genes: cytokines, chemokines and 
adhesion molecules) pathways in 250 benzene-exposed 
(mean 5.44 ppm) and 140 unexposed workers. Lan et al. 

described reduced peripheral blood counts of total leuko-
cytes, granulocytes, lymphocytes, CD4+ T cells, CD4/CD8 
ratio, B cells, monocytes and platelets. A significant correla-
tion between leukopenia and SNPs of the interleukins IL-1A, 
IL-4, IL-10, IL-12A and vascular cell adhesion molecule 1 
genes was found. The authors reported that selected variants 
seemed to influence only granulocytes, whereas others al-
tered cell types of both the myeloid and lymphoid lineage, 
suggesting effects that could extend to earlier progenitor and 
possibly stem cells. Another report described an association 
between SNPs in the tumor necrosis factor  promoter re-
gion and the development of myelodysplastic syndrome 
(benzene-induced dysplasia) in individuals exposed to high 
concentrations of benzene [197]. Taken together, these two 
reports suggest that cytokine-mediated growth regulation is 
involved in benzene-associated hematotoxicity. One possible 
mechanism could be that these soluble mediators mediate 
survival growth-enhancing signaling to transformed cells. 
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6.3. Genes Involved in the Repair Pathway 

A third study of the same study population described 
above [196] found an association between benzene-induced 
hematotoxic effects and a number of SNPs in seven genes 
important in repairing DNA double-strand breaks [198]. 
Among exposed workers, one SNP in BRCA2, four SNPs in 
WRN and one SNP in TP53 were associated with a decrease 
in white blood cell counts. These three gene products play an 
important role in multiple mechanisms including DNA dam-
age recognition, replication, recombination, repair and cell 
cycle regulation, all of which are critical to maintain ge-
nomic integrity. Further, genetic polymorphism in the gene 
X-ray cross-complementation group 1, which plays an im-
portant role in both base excision repair and single-strand 
repair [199], was associated with a higher frequency of 
chromosomal aberrations and micronuclei in a group of ben-
zene-exposed refinery workers [191]. 

7. CONCLUDING REMARKS 

Although the association between benzene exposure and 
AML has been established, which exposure level that causes 
an increased risk and which exposure pattern that best pre-
dicts the risk (cumulative versus peaks) are still uncertain. 
No clear evidence indicates a threshold level below which 
benzene does not affect human hematopoiesis or peripheral 
blood cell levels. Emerging knowledge of nonlinear dose-
related production of major metabolites, favoring the produc-
tion of the hematotoxic quinones at low benzene exposure, 
implies a probable underestimation in previous risk assess-
ments of the risk at low exposure. 

The scientific literature also debates the association be-
tween benzene exposure and other malignancies of the blood 
and blood-forming organs. Although increasing evidence 
indicates an association between benzene exposure and mul-
tiple myeloma, evidence for other types of chronic leukemia 
and lymphoma is weak. There is a biologically plausible 
basis for suggesting benzene as a causal factor for these ma-
lignancies, and this is especially true for malignancies of the 
blood and blood-forming organs developing in the bone mar-
row, such as multiple myeloma, acute lymphoblastic leuke-
mia and chronic myeloproliferative disorders. The bone mar-
row may be particular prone to benzene-induced toxicity 
through the presence of myeloperoxidase, an enzyme in-
volved in forming hydroquinone, a biologically reactive ben-
zene metabolite. These benzene metabolites are assumed to 
exert their effect through a concerted action of genotoxic 
damage, DNA repair failures and altered oncogenic signal-
ing. Studies of benzene-exposed workers suggest that the 
risk of developing hematotoxicity also depends on genetic 
polymorphisms in benzene-activating and detoxifying en-
zymes, DNA repair capacity and various growth-regulatory 
soluble mediators. However, additional studies of the leu-
kemogenic effects of benzene are definitely needed, includ-
ing investigations of the effects on various hematopoietic 
progenitor cell subsets. 

Together these observations suggest that, even at low ex-
posure levels, benzene may contribute to the risk of malig-
nancies of the blood and blood-forming organs, especially 
among genetically susceptible individuals. More knowledge 
about how benzene exposure affects the blood cells of the 
human system, such as affected signaling pathways or 

changes in gene expression, might provide hematologists 
with a basis for developing detection and technologies for 
preventing benzene-induced hematotoxicity. 

Although the fraction of malignancies of the blood and 
blood-forming organs that can be attributed to occupational 
benzene exposure is probably low in the general population, 
it involves high risk for various groups of workers who are 
unwillingly subjected to the additional burden of this expo-
sure. Exposed workers might be subjected to an unacceptable 
risk that can be avoided by enforcing proper preventive 
measures. 
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